If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=9x+45
We move all terms to the left:
x^2-(9x+45)=0
We get rid of parentheses
x^2-9x-45=0
a = 1; b = -9; c = -45;
Δ = b2-4ac
Δ = -92-4·1·(-45)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{29}}{2*1}=\frac{9-3\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{29}}{2*1}=\frac{9+3\sqrt{29}}{2} $
| s+1=36 | | 2x-26=2x+94 | | 1=w/7-2 | | 25(30-14)=100s | | 2(p-25)=50 | | 1s/7+34=44 | | 28x-32=10x+25 | | 25s(30-14)=100 | | 8x-6x=8x-40 | | (13)-18-6x=6(1+3x) | | 7/z=-12 | | 5(z+4)=70 | | 7(w–1)=2w+3 | | (X+2)^2+(y-3)^2=4096 | | (2x-6)X(3x+6)= | | (13)−18−6x=6(1+3x) | | 2x+3x=5x-40 | | 5/7=p+4 | | 3(m+1)-m=9 | | 384=65+(8*x*4) | | (13)−18−6k=6(1+3k) | | 8p+2p=50 | | 4n-5+115=50 | | 25+7o=-39 | | 4n-5+115=90 | | 1/2(-4+6x)=1−3x+2−3(x+9) | | 1/2(-4+6x)=1/3x+2−3(x+9) | | -6x+3=6+3 | | 5x+142=13x-10 | | 4k÷6=4 | | 3x=41/7 | | 12x+½=3x-8 |